Glutamine. The fina...
 
Notifications
Clear all

Glutamine. The final verdict!!!!!

24 Posts
10 Users
0 Reactions
7,611 Views
Bigr
 Bigr
(@bigr)
Active Member
Joined: 7 years ago
Posts: 17
Topic starter  

glutamine DOES NOTHING FOR BB-ING PURPOSES

glutamine production in muscle protein is 50% lower than assumed
-Results of tracer studies indicate that skeletal muscle contributes to approximately 70% of overall glutamine production in healthy adults; the contribution of de novo synthesis being estimated at approximately 60%. Direct and specific measurements of glutamine in intact muscle protein are 50% lower than assumed previously (G1).

Most amino acids are precursors for alanine and glutamine synthesis in skeletal muscle
-Cysteine, leucine, valine, methionine, isoleucine, tyrosine, lysine, and phenylalanine increase the rate of glutamine synthesis. The progressive decline in alanine and glutamine synthesis noted on prolonged incubation is prevented by the addition of amino acids to the incubation medium (G2)

90% of the glutamine you take orally never even makes it to your muscles. glutamine supplementation decreases it's own synthesis and mostly turns itself into glucose.
-Systemic glutamine administration is ineffective in preventing muscle depletion, due to a relative inability of skeletal muscle to seize glutamine from the bloodstream. Transport from blood accounts for only 25% of the intramuscular glutamine pool turnover. In contrast, the intracellular pools of most essential amino acids, such as phenylalanine or leucine, derived largely from the extracellular space. Studies involving oral ingestion of stable isotope-labelled glutamine indicate that 50-70% of enterally administered glutamine is taken up during first pass by splanchnic organs (gut and liver). (G14).
-glutamine orally is successful in elevating plasma glutamine at the peak concentration by 46%, which suggests that a substantial proportion of the oral load escaped utilization by the gut mucosal cells and uptake by the liver and kidneys. If the entire glutamine dose had been distributed within the blood (8% body wt) and extracellular fluid (20% lean body mass) compartments, then a 3-mM rise in blood glutamine concentration might have been expected, whereas plasma glutamine concentration was only observed to rise by 0.3 mM. This might suggest that only 10% of the oral dose reached the extracellular fluid compartments (G15).
-Infusion of glutamine increases plasma glutamine concentration and turnover only threefold, formation of glucose from glutamine increased sevenfold. Furthermore, glutamine infusion decreased its own de novo synthesis (4.55 +/- 0.22 vs. 2.81 +/- 0.62 micromol x kg(-1) x min(-1);P < 0.02) (G16).

glutamine does not prevent exercise-induced immune impairment. Carbs do. And glutamine does not influence hormonal levels
-Consuming 30-60 g carbohydrate x h(-1) during sustained intensive exercise attenuates rises in stress hormones such as cortisol and appears to limit the degree of exercise-induced immune depression. Convincing evidence that so-called 'immune-boosting' supplements, including high doses of antioxidant vitamins, glutamine, zinc, probiotics and Echinacea, prevent exercise-induced immune impairment is currently lacking (G31).
-Intracellular glutamine concentration may not be compromised when plasma levels are decreased postexercise. In addition, a number of recent intervention studies with glutamine feeding demonstrate that, although the plasma concentration of glutamine is kept constant during and after acute, strenuous exercise, glutamine supplementation does not abolish the postexercise decrease in in vitro cellular immunity, including low lymphocyte number, impaired lymphocyte proliferation, impaired natural killer and lymphokine-activated killer cell activity, as well as low production rate and concentration of salivary IgA (G32).
-glutamine supplementation abolished the postexercise decline in plasma glutamine concentration but had no effect on lymphocyte trafficking, NK and lymphokine-activated killer cell activities, T cell proliferation, catecholamines, growth hormone, insulin, or glucose (G33).
-Nutritional supplementation with glutamine abolishes the exercise-induced decline in plasma glutamine, but does not influence post-exercise immune impairment. However, carbohydrate loading diminishes most exercise effects of cytokines, lymphocyte and neutrophils (G34).

glutamine does not increase protein synthesis
-Intravenous infusion of amino acids increases the fractional rate of mixed muscle protein synthesis, but addition of glutamine to the amino acid mixture does not further stimulate muscle protein synthesis rate in healthy young men and women (G6).
-Short intravenous infusion of glutamine does not acutely stimulate duodenal protein synthesis in well-nourished, growing dogs (G8).

glutamine prevents protein degradation but not more effectively than carbs
-0,9 g/kg glutamine during resistance training has no significant effect on muscle performance, body composition or muscle protein degradation compared to 0,9 g/kg maltodextrin (G9).
-glutamine preserves protein synthesis in Caco-2 cells submitted to "luminal fasting", but higher glutamine doses did not enhance protein synthesis beyond control fed values. And glucose supplementation restored FSR as effi-ciently as glutamine (G10).

Carbhohydrate or BCAA supplementation prevents decrease in glutamine levels during exercise
-Carbohydrate supplementation affects positively the immune response of cyclists by avoiding or minimizing changes in plasma glutamine concentration (G11).
-Following an exercise bout, a decrease in plasma glutamine concentration can be observed, which is completely abolished by BCAA supplementation (G12).
-BCAA supplementation during a triathlon completely prevents the decrease in plasma glutamine (G13).
-7 distance runners reduced muscle gycogen. A high carb meal (80% carbs) before 60 min. exercise increases plasma glutamine. A 14 h fast before exercise does not change plasma glutamine. Plasma BCAA did not change under either dietary condition (G17).

Fasting decreases glutamine transport. And supplementation during fasting does not prevent muscle loss
-During fasting, skeletal muscle exports increased amounts of glutamine (Gln) while increasing the production of this amino acid by glutamine synthetase (GS) in order to maintain the intramuscular Gln pool (G41).
-Background: One of the major activities of the enterocyte is amino acid transport, which is important not only for the organism but also for the integrity of the mucosa. Bowel rest during the postoperative period is marked by decreased calorie and protein intake with atrophy of the brush border mucosa.
Fasting for 72 hours decreases glutamine and arginine transport. Alanine MeAIB, and leucine transport were maintained (G42).
-0.35 g/kg glutamine/day does not prevent loss of lean muscle in athletes during a 12-day weight reduction program (G43).

glutamine does not enhance performance
-6 resistance-trained men performed weightlifting exercises after ingesting 0.3 g/kg glutamine. This did not enhance performance (G22).


   
Quote
Topic Tags
(@olb33)
Member
Joined: 7 years ago
Posts: 5
 

millions of glutamine posts lately

Stuff I say is ficticious. DOnt take anything I say seriously.


   
ReplyQuote
(@beefypecs)
Active Member
Joined: 6 years ago
Posts: 7
 

That just sucks!! I thought glutamine was beneficial!!


   
ReplyQuote
Bigr
 Bigr
(@bigr)
Active Member
Joined: 7 years ago
Posts: 17
Topic starter  

More:

glutamine plays no part whatsoever in protein synthesis
A protein rich meal (3 g/kg lean beef) in 7 healthy sujects increases AAs from the splanchic bed. BCAAs accounted for more than half of total splanchic AA output. Arterial BCAA concentrations incremented 100-200%. Leg exchange of most AAs reverted from a basal net output to a net uptake which was most marked for the BCAAs. glutamine was continuously taken up by the splanchic tissues and released by the leg tissues after the protein meal, although their rate of output from the leg declined transiently at 30-60 min. Protein intake resulted in a doubling of arterial insulin and glucagon.
After protein ingestion within 30-60 min. net uptake of the leg was observed for valine, leucine and isoleucine, and to a lesser extent for threonine, serine, glycine, tyrosine, phenylalanine, lysine, histidine, and arginine. The uptake of the BCAAs accounted for more than half of total leg AA uptake at 30-60 min, and for virtually all of the AA uptake at 90-180 min. Throughout the 3-h period of observation after protein intake, a continuous net release of alanine and glutamine was observed.
It is thus clear that the BCAAs are the major source for repletion of muscle nitrogen after protein intake (G53).

glutamine deficiency hardly ever occurs in humans and do not necessarily indicate a deficient state
Although glu-tamine is generally recognized to be safe on the basis of relatively small studies, side effects in patients receiving home parenteral nutrition and in those with liver-function abnormali-ties have been described. Therefore, on the basis of currently available clinical data, it is inappropriate to recommend gluta-mine for therapeutic use in any condition.
There is little confirmatory evidence of glutamine deficiency in humans and of a role for either glutamine replacement therapy or pharmacologic doses of glutamine. Decreased blood concentrations of glutamine do not necessarily indicate a deficient state, as is the case with other nutrients. The loss of amino acids from skeletal muscle is not specific to glutamine (G51).

Nutritional depletion does not determine glutamine concentrations
Inflammation rather than nutritional depletion determines glutamine concentrations and intestinal permeability.
glutamine supplementation may not even effect plasma and mucosal glutamine concentrations at all. There are concflicting results and the reason for this has not been clarified yet. Major changes in glutamine metabolism take place during inflammatory stress and glutamine supplementation has been most successful under these circumstances. Nutritional depletion per se does not affect glutamine concentrations (G52).


   
ReplyQuote
Big Cat
(@big-cat)
Member
Joined: 7 years ago
Posts: 345
 

Isn't that what I've been saying for the last 5 years now ???

Good things come to those who weight.

The Big Cat is a researcher and theoreticist. His advice must never be taken in the stead of proper advice from a medical professional, it is entirely intended for research purposes.


   
ReplyQuote
liftsiron
(@liftsiron)
Member
Joined: 7 years ago
Posts: 507
 

I used to be a big fan of glutimine. But over the years have used bcaa's instead of l-glutimine when cutting with far greater results.

liftsiron is a fictional character and should be taken as such.


   
ReplyQuote
(@beefypecs)
Active Member
Joined: 6 years ago
Posts: 7
 

I guess the results that I got from glutamine were in my head


   
ReplyQuote
pSimonkey
(@psimonkey)
Estimable Member
Joined: 6 years ago
Posts: 110
 

What about glutamine being an excitory amino acid? Is there a study to show that the stimulation from L-glutamine has an effect on muscle contraction?


   
ReplyQuote
Big Cat
(@big-cat)
Member
Joined: 7 years ago
Posts: 345
 
Posted by: beefypecs
I guess the results that I got from glutamine were in my head

There is a big difference between a placebo effect and seeing things. And if your placebo effect was sufficient, you have no reason to be upset, in a way you could say you got your money's worth ....

Good things come to those who weight.

The Big Cat is a researcher and theoreticist. His advice must never be taken in the stead of proper advice from a medical professional, it is entirely intended for research purposes.


   
ReplyQuote
pSimonkey
(@psimonkey)
Estimable Member
Joined: 6 years ago
Posts: 110
 
Posted by: Big Cat
There is a big difference between a placebo effect and seeing things. And if your placebo effect was sufficient, you have no reason to be upset, in a way you could say you got your money's worth ....

maybe we could start a well researched study/rumour that chocolate increases muscle size and definition


   
ReplyQuote
(@beefypecs)
Active Member
Joined: 6 years ago
Posts: 7
 
Posted by: pSimonkey
maybe we could start a well researched study/rumour that chocolate increases muscle size and definition

I wish it did because I love chocolate


   
ReplyQuote
Big Cat
(@big-cat)
Member
Joined: 7 years ago
Posts: 345
 

well i haven't seen anything to that extent, but the theobromine in chocolate makes a wonderful anti-tussive, so you have an excuse the next time you have a cough

Good things come to those who weight.

The Big Cat is a researcher and theoreticist. His advice must never be taken in the stead of proper advice from a medical professional, it is entirely intended for research purposes.


   
ReplyQuote
(@beefypecs)
Active Member
Joined: 6 years ago
Posts: 7
 
Posted by: Big Cat
well i haven't seen anything to that extent, but the theobromine in chocolate makes a wonderful anti-tussive, so you have an excuse the next time you have a cough

Works for me!


   
ReplyQuote
Bigr
 Bigr
(@bigr)
Active Member
Joined: 7 years ago
Posts: 17
Topic starter  
Posted by: beefypecs
I guess the results that I got from glutamine were in my head

BC, correct me if i'm stating crap here, but this is the only possible explantion i could find!

The faster recovery people notice on glutamine is not an increase in protein synthesis (net protein balance). It is not a placebo but because of a decreased stimulus of the pain receptors:

 

quote:


So, what actually causes the soreness?

A bout of exercise causes inflammation, which leads to an increase in the production of immune cells (comprised mostly of macrophages and neutrophils).

Levels of these immune cells reach a peak 24-48 hours after exercise. These cells, in turn, produce bradykinins and prostaglandins, which make the pain receptors in your body more sensitive.

The result?

Whenever you move, these pain receptors are stimulated. Because they're far more sensitive to pain than normal, you end up feeling sore.


The possible decrease in muscle soreness people sense during a high-glutamine diet is possibly caused by the anti-inflammatory properties of glutamine. AND NOT BECAUSE OF A SUPPOSED INCREASE IN PROTEIN SYNTHESIS/DECREASE IN PROTEIN BREAKDOWN CAUSED BY glutamine.
Therefore glutamine does not actually speed up recovery, it just feels like it does so!

 

quote:


Evaluation of anti-inflammatory and analgesic properties of L-glutamine.

It was established that L-glutamine, an aminoacid, has marked anti-inflammatory activity and moderate analgesic activity. The drug was effective orally in suppressing various experimentally induced inflammatory reactions and did not show any gastric irritation in anti-inflammatory doses. It is observed that the anti-inflammatory effect of L-glutamine is not due to counter irritant action. It is suggested that it may partially mediate its anti-inflammatory activity by interfering with the action and/or synthesis of prostaglandins. Its anti-inflammatory activity is comparable to that of phenylbutazone and merits further study.



   
ReplyQuote
Big Cat
(@big-cat)
Member
Joined: 7 years ago
Posts: 345
 

Nice work. That is one angle I had not examined myself yet.

Good things come to those who weight.

The Big Cat is a researcher and theoreticist. His advice must never be taken in the stead of proper advice from a medical professional, it is entirely intended for research purposes.


   
ReplyQuote
Page 1 / 2
Share: